Vertex Ordering Characterizations of Graphs of Bounded Asteroidal Number
نویسندگان
چکیده
Asteroidal Triple-free (AT-free) graphs have received considerable attention due to their inclusion of various important graphs families, such as interval and cocomparability graphs. The asteroidal number of a graph is the size of a largest subset of vertices such that the removal of the closed neighbourhood of any vertex in the set leaves the remaining vertices of the set in the same connected component. (AT-free graphs have asteroidal number at most 2.) In this paper, we characterize graphs of bounded asteroidal number by means of a vertex elimination ordering, thereby solving a long-standing open question in algorithmic graph theory. Similar characterizations are known for chordal, interval, and cocomparability graphs. AMS classification: 05C15, 05C75
منابع مشابه
Asteroidal number for some product graphs
The notion of Asteroidal triples was introduced by Lekkerkerker and Boland [6]. D.G.Corneil and others [2], Ekkehard Kohler [3] further investigated asteroidal triples. Walter generalized the concept of asteroidal triples to asteroidal sets [8]. Further study was carried out by Haiko Muller [4]. In this paper we find asteroidal numbers for Direct product of cycles, Direct product of path and cy...
متن کاملVertex Ranking of Asteroidal Triple-Free Graphs
We present an efficient algorithm for computing the vertex ranking number of an asteroidal triple-free graph. lts running time is bounded by a polynomial in the number of vertices and the number of minimal separators of the input graph.
متن کاملPowers of Asteroidal Triple-free Graphs with Applications
An asteroidal triple is an independent set of three vertices in a graph such that every two of them are joined by a path avoiding the closed neighborhood of the third. Graphs without asteroidal triples are called AT-free graphs. In this paper, we show that every AT-free graph admits a vertex ordering that we call a 2-cocomparability ordering. The new suggested ordering generalizes the cocompara...
متن کاملFeedback vertex set on AT-free graphs
We present a polynomial time algorithm to compute a minimum (weight) feedback vertex set for AT-free graphs, and extending this approach we obtain a polynomial time algorithm for graphs of bounded asteroidal number.
متن کاملColouring AT-Free Graphs
A vertex colouring assigns to each vertex of a graph a colour such that adjacent vertices have different colours. The algorithmic complexity of the Colouring problem, asking for the smallest number of colours needed to vertex-colour a given graph, is known for a large number of graph classes. Notably it is NP-complete in general, but polynomial time solvable for perfect graphs. A triple of vert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 78 شماره
صفحات -
تاریخ انتشار 2015